skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nair, Hari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Teherani, Ferechteh H; Rogers, David J (Ed.)
  2. In bulk Sr 2 RuO 4 , the strong sensitivity of the superconducting transition temperature T c to nonmagnetic impurities provides robust evidence for a superconducting order parameter that changes sign around the Fermi surface. In superconducting epitaxial thin-film Sr 2 RuO 4 , the relationship between T c and the residual resistivity ρ 0 , which in bulk samples is taken to be a proxy for the low-temperature elastic scattering rate, is far less clear. Using high-energy electron irradiation to controllably introduce point disorder into bulk single-crystal and thin-film Sr 2 RuO 4 , we show that T c is suppressed in both systems at nearly identical rates. This suggests that part of ρ 0 in films comes from defects that do not contribute to superconducting pairbreaking and establishes a quantitative link between the superconductivity of bulk and thin-film samples. Published by the American Physical Society2024 
    more » « less
  3. Abstract Mott metal–insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next‐generation energy‐efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in‐situ during a Mott transition in a Ca2RuO4thin film. Machine learning‐assisted X‐ray nanodiffraction together with cryogenic electron microscopy reveal multi‐scale periodic domain formation at and below the film transition temperature (TFilm ≈ 200–250 K) and a separate anisotropic spatial structure at and aboveTFilm. Local resistivity measurements imply an intrinsic coupling of the supercrystal orientation to the material's anisotropic conductivity. These findings add a new degree of complexity to the physical understanding of Mott transitions, opening opportunities for designing materials with tunable electronic properties. 
    more » « less
  4. Low resistance non-alloyed ohmic contacts are realized by a metal-first process on homoepitaxial, heavily n+ doped (010) β-Ga2O3. The resulting contacts have a contact resistance (Rc) as low as 0.23 Ω-mm on an as-grown sample and exhibit nearly linear ohmic behavior even without a post-metallization anneal. The metal-first process was applied to form non-alloyed contacts on n+ (010) β-Ga2O3 grown by metal-organic chemical vapor deposition (MOCVD) as well as suboxide molecular beam epitaxy. Identical contacts fabricated on similar MOCVD samples by conventional liftoff processing exhibit highly rectifying Schottky behavior. Re-processing using the metal-first process after removal of the poor contacts by conventional methods does not improve the contacts; however, addition of a Ga-flux polishing step followed by re-processing using a metal-first process again results in low resistance, nearly linear ohmic contacts. The liftoff process, therefore, does not reliably render nearly linear ohmic behavior in non-alloyed contacts. Furthermore, no interface contamination was detected by x-ray photoelectron spectroscopy. This suggests that during the initial liftoff processing, a detrimental layer may form at the interface, likely modification of the Ga2O3 surface, that is not removable during the contact removal process but that can be removed by Ga-flux polishing. 
    more » « less
  5. New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials. 
    more » « less